Enzyme Biosynthesis in Escherichia Coli

نویسندگان

  • George Weinbaum
  • M. F. Mallette
چکیده

Escherichia coli B synthesized beta-galactosidase and an enzyme system for D-xylose when exposed to lactose and xylose respectively in nitrogen-free media. The amount of beta-galactosidase formed in the absence of external nitrogen depended upon the nature of the medium in which the cells had originally been grown. Half as much of this enzyme was synthesized without exogenous nitrogen by cells taken from a nitrogen-rich medium as was formed by cells under favorable conditions with an external supply of nitrogen. Escherichia coli B contained a pool of nitrogen compounds soluble in 80 per cent ethanol and made up of several ninhydrin-positive components. One of these was identified chromatographically as glycine using an authentic radioactive sample. Another substance behaved like serine on the chromatograms. The internal pool of amino acids and peptides was large enough to account for the beta-galactosidase synthesized by cells exposed to lactose in a medium free of nitrogen. Some degree of interaction of the syntheses of the beta-galactosidase and xylose enzyme systems was observed in nitrogen-free media. This interaction produced a greater effect on the formation of beta-galactosidase and was attributed to a limiting factor(s) in the internal nitrogenous pool or to a limiting intermediate in enzyme synthesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Concomitant Lycopene Biosynthesis on CoQ10 Accumulation in Transformed Escherichia coli Strains

CoQ10 and lycopene are isoprenoid compounds with nutraceutical and pharmaceutical benefits. In this study, the effect of concomitant lycopene biosynthesis on CoQ10 accumulation in transformed Escherichia coli DH5α was studied. A lycopene production pathway including geranylgeranyl diphosphate synthase (crtE), phytoene synthase (crtB), and phytoene desaturase (crtI) from Erwinia herbicola was co...

متن کامل

Cloning and optimization of phytase enzyme gene expression in Escherichia coli

Introduction Phytase is an enzyme that has the ability to break down phytic acid into myoinositol and mineral phosphate, and widely uses as an additive in animal foods. The aim of this study was to achieve a high level of bacterial phytase expression in PET26b expression host. Materials and Methods To generate the recombinant phytase enzyme, the target gene was introduced into the expression ...

متن کامل

Structure of Escherichia coli uridine phosphorylase at 2.0 A.

The 2.0 A crystal structure has been determined for Escherichia coli uridine phosphorylase (UP), an essential enzyme in nucleotide biosynthesis that catalyzes the phosphorolytic cleavage of the C-N glycosidic bond of uridine to ribose-1-phosphate and uracil. The structure determination of two independent monomers in the asymmetric unit revealed the residue composition and atomic details of the ...

متن کامل

Establishment of molybdeum cofactor detection system in Escherichia coli

In the current study, in order to verify the presence of bacterial Molybdenum cofactor, an indirect approach was made by showing the activity of BisC enzyme as a reporter gene. The activity of the BisC enzyme is dependent to Bis-MGD cofactor. BisC enzyme converts biotin sulfoxide to biotin under abiotic stress condition and it can also reduce TMANO and because of this property it was applied on...

متن کامل

Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli.

Escherichia coli expressing the Erwinia carotenoid biosynthesis genes, crtE, crtB, crtI and crtY, form yellow-coloured colonies due to the presence of beta-carotene. This host was used as a visible marker for evaluating regulatory systems operating in isoprenoid biosynthesis of E. coli. cDNAs enhancing carotenoid levels were isolated from the yeast Phaffia rhodozyma and the green alga Haematoco...

متن کامل

Homology modeling of phosphoryl thymidine kinase of enterohemorrhagic Escherichia coli OH: 157

Enterohemorrhagic Escherichia coli (EHEC) are source of emerging infectious disease in India. Escherichia coli O157:H7 is an EHEC strain showing multiple antibiotic resistances and the cause of infantile diarrhea and hemolytic uremic syndrome worldwide. A novel strategy to counteract multiple antibiotic resistant organisms is to design drugs which specifically target metabolic pathways such as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 42  شماره 

صفحات  -

تاریخ انتشار 1959